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We present results of numerical experiments on two-dimensional compressible con- 
vection in a polytropic layer with an imposed horizontal magnetic field. Our aim is to 
determine how far this geometry favours the occurrence of travelling waves. We there- 
fore delineate the region of parameter space where travelling waves are stable, explore 
the ways in which they lose stability and investigate the physical mechanisms that 
are involved. In the magnetically dominated regime (with the plasma beta, b = 8), 
convection sets in at an oscillatory bifurcation and travelling waves are preferred 
to standing waves. Standing waves are stable in the strong-field regime ( B  = 32) 
but travelling waves are again preferred in the intermediate region () = 128), as 
suggested by weakly nonlinear Boussinesq results. In the weak-field regime (b 2 512) 
the steady nonlinear solution undergoes symmetry-breaking bifurcations that lead to 
travelling waves and to pulsating waves as the Rayleigh number, R, is increased. The 
numerical experiments are interpreted by reference to the bifurcation structure in the 
(b, &-plane, which is dominated by the presence of two multiple (Takens-Bogdanov) 
bifurcations. Physically, the travelling waves correspond to slow magnetoacoustic 
modes, which travel along the magnetic field and are convectively excited. We con- 
clude that they are indeed more prevalent when the field is horizontal than when it 
is vertical. 

1. Introduction 
Sunspots and starspots provide the astrophysical motivation for studying convection 

in a strong magnetic field. In Part 1 (Hurlburt et al. 1989) and Part 2 (Proctor et al. 
1994) of this series we described time-dependent behaviour when the imposed field 
is vertical, and further effects of stratification were explored by Weiss et al. (1990). 
That configuration relates to the dark central umbra of a sunspot but the field lines 
fan out in the penumbra, becoming almost horizontal at its outer edge. The bright 
and dark filaments in the penumbra are associated with a complicated magnetic 
structure (Thomas & Weiss 1992) but there is as yet no adequate model of penumbral 
convection. It seems clear, however, that the transition from a pore (corresponding 
to an isolated umbra) to a spot (with a filamentary penumbra) is associated with 
the sudden development of filamentary convection (Rucklidge, Schmidt & Weiss 
1995). This can be modelled as a three-dimensional instability of an axisymmetric 
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poloidal circulation. Indeed, penumbral waves, which run outwards as concentric 
arcs enclosing a large fraction of a spot (Lites 1992), provide evidence of a form 
of convectively excited motion that is effectively axisymmetric. So we first need to 
explore the effects of different field geometries on convection. In an inclined field 
convection may take the form of travelling waves with the velocity confined to vertical 
planes containing the magnetic field (Matthews et al. 1992; Hurlburt, Matthews & 
Proctor 1995) rather than rolls with axes lying in such planes (Chandrasekhar 1961). 
With a horizontal field convection is unimpeded if it takes place in rolls aligned with 
the magnetic field. This configuration would be relevant if sunspots had shallow 
penumbrae - but observations confirm that penumbrae must be deep. Then simple 
models show that convection has to transport energy inwards across the field from 
the external plasma. Thus it is appropriate to investigate the idealized problem of 
two-dimensional convection in rolls whose axes are perpendicular to the magnetic 
field. We regard this study as a necessary preliminary to more ambitious models of 
penumbral structure, which is intrinsically three-dimensional. 

There is another, fluid dynamical motivation for studying this problem. Magneto- 
convection is an important example of 'double convection', where there are competing 
stabilizing and destabilizing mechanisms (in this case, the magnetic field and the su- 
peradiabatic temperature gradient) with different characteristic diffusion times. Such 
competition often leads to oscillatory behaviour. With periodic lateral boundary 
conditions, a Hopf bifurcation gives rise to travelling and standing wave solutions, 
and nonlinear processes determine which of these is preferred. It is natural to seek 
a physical argument as well. In the presence of a magnetic field a convecting layer 
acts as a waveguide for slow magnetoacoustic waves which travel along the field 
(cf. Part 1). Intuitively, one might expect travelling waves to be preferred if the 
field is horizontal, while standing waves should be more likely if the field is vertical. 
Numerical experiments can determine whether this naive argument is valid. In such 
problems there is a competition between physical processes and the constraints im- 
posed by bifurcation theory. The computations reveal a rich underlying bifurcation 
structure, involving interactions between travelling waves, standing waves and other 
types of oscillation, such as pulsating waves, that are permitted by the symmetries 
(Proctor & Weiss 1993; Matthews et al. 1993). In fact, this problem provides a 
fine demonstration of the way in which such a bifurcation structure can be used to 
interpret the numerical results. 

Boussinesq magnetoconvection in a horizontal field was first investigated by Arter 
(1983) but his mirror-symmetric lateral boundary conditions excluded travelling 
waves. In the regime of interest, convection sets at a Hopf bifurcation, giving 
rise to a branch of standing wave solutions, at a Rayleigh number R = R('). This os- 
cillatory branch terminates in a heteroclinic bifurcation, on an unstable section of the 
branch of steady solutions emerging from a pitchfork bifurcation at R = Rte) > R('). 
Although there are (unstable) weakly nonlinear steady solutions for R slightly greater 
than R("', the steady branch has two turning points and stable steady solutions first 
appear at R = &in, where R(') < Rmin < R("). This bifurcation structure is similar to 
that found when the field is vertical (Proctor & Weiss 1982). 

Knobloch (1986) studied the effect of introducing periodic lateral boundary con- 
ditions, which allow travelling waves as well as standing waves in the the same 
parameter regime. He found that travelling waves are stable (and standing waves un- 
stable) in the immediate neighbourhood of the double Takens-Bogdanov bifurcation 
(where R(') = Ide)). In the analogous situation with a vertical field, standing waves 
tend to be preferred (Dangelmayr & Knobloch 1986). It is not clear how far these 
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results extend into the nonlinear regime if there are turning points on the steady 
branch or if the Hopf and pitchfork bifurcations are no longer close. With a vertical 
field, a systematic survey showed that either travelling waves or standing waves may 
be preferred in the Boussinesq limit, depending on the parameters, and that there was 
no straightforward way of predicting the result (Matthews & Rucklidge 1993). Nu- 
merical experiments on compressible magnetoconvection (Hurlburt & Toomre 1988 ; 
Parts 1 and 2) reveal a general preference for standing waves, except in the regime 
where the ratio of gas pressure to magnetic pressure (the plasma beta, b )  is small, as 
well as a great variety of periodic, quasi-periodic and chaotic oscillations. 

This paper differs in three ways from Arter’s study of convection in a horizontal 
field. First, the fluid layer is stratified: although there is no great variation in density, 
the up-down symmetry of the Boussinesq problem is absent, symmetry properties of 
solutions are changed and the bifurcation structure is affected (Proctor & Weiss 1993; 
Matthews et al. 1993). Second, effects of compressibility are included and become 
important when b approaches unity. Third, and most important, we adopt periodic 
lateral boundary conditions, which allow a range of symmetry-breaking bifurcations; 
solutions found with fixed lateral boundaries may therefore prove unstable. A similar 
configuration, with different boundary conditions at the top and bottom of the layer, 
has been studied by Lantz & Sudan (1995; Lantz 1995) in the anelastic approximation. 

Our numerical experiments yield examples of several different types of nonlinear 
solution. After a pitchfork bifurcation convection sets in as a steady solution (SS), 
which is stationary in the frame with zero net momentum, but a Hopf bifurcation 
gives rise to periodic standing waves (SW), i.e. stationary oscillations with reversals 
of the flow, and to travelling waves (TW), which are stationary in a uniformly moving 
frame. Secondary bifurcations lead to modulated waves (MW), which are periodic in 
a uniformly moving frame, and to pulsating waves (PW), which are periodic and have 
a symmetry such that advancing half a period in time is equivalent to reflection about 
a vertical plane. The interactions between these solutions give rise to complicated 
patterns of behaviour, which cannot be understood until the underlying bifurcation 
structure has been established. Our aim, therefore, is to infer the bifurcation structure 
from the numerical results. In describing them, we shall concentrate on qualitative 
features but it is also essential to list the quantitative details that justify our assertions. 

We have carried out a, systematic numeric31 investigation of nonlinear behaviour 
over the range 1500 d R d 128000, where R is the Rayleigh number, defined (like 
other dimensionless quantities) in Parts 1 and 2, for b 2 8 and we find four different 
regimes depending on the strength of the imposed magnetic field. The stability 
boundary, beyond which convection is suppressed by the magnetic field, lies close 
to b = 8 when k is large. Near this boundary is a magnetically dominated regime, 
where fluctuations in magnetic pressure are important: for p = 8 travelling waves 
are preferred, as in a vertical field. With strong fields ( f i  = 32) there is a transition 
from standing waves via modulated waves to travelling waves as R is increased ; some 
of these results have been reproduced in reviews (Weiss 1991; Proctor 1992) and 
presented as a video. In the intermediate-field regime (512 2 f l  2 128) behaviour is 
essentially Boussinesq and travelling waves are preferred until streaming instabilities 
lead to pulsating waves at high k. Finally, in the weak-field limit ( f l  2 8192) 
the Lorentz force is insignificant and hydrodynamic behaviour is only affected by 
compressibility at high Rayleigh numbers. 

The paper is organized as follows. In the next section we define the model 
configuration and investigate its linear stability. In 93 we explore weakly nonlinear 
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behaviour and describe the competition between standing waves and travelling waves 
in the oscillatory regime. Then, in 94, we study interactions between travelling waves 
and steady convection in the intermediate- and weak-field regimes, and establish the 
relevant bifurcation structures. Transitions to pulsating waves, from steady convection 
and from travelling waves, are briefly discussed in $ 5 ;  this allows us to construct the 
final bifurcation diagram, which is dominated by a pair of codimension-two (Takens- 
Bogdanov) bifurcations. In the last section we draw conclusions from these results 
and relate them to behaviour in other doubly-convective systems. 

2. The model problem 
We shall investigate fully compressible two-dimensional magnetoconvection in a 

perfect monatomic gas. The configuration differs from that described in Parts 1 and 
2 only in that the imposed magnetic field is horizontal and not vertical, so there is 
no need to repeat the details here. The dimensionless temperature T ,  velocity u and 
magnetic field B satisfy the partial differential equations (2.1)-(2.4) of Part 2 in the 
region (0 < x < 1; zo < z < zo + l}, where symbols are defined in Parts 1 and 2. The 
layer is heated uniformly from below, so that T(x,  ZO) = 20, T ( x ,  zo + 1) = zo + 1, and 
the velocity satisfies the usual stress-free boundary conditions, so that u, = au,/az = 0 
at z = z0,zO + 1. The vertical component of the magnetic field vanishes at the upper 
and lower boundaries and the total magnetic flux remains constant, so that the 
horizontal component of the electric field E = CoRV x B - u x B vanishes at the 
top and bottom of the layer. This is equivalent to assuming that the boundaries are 
perfectly conducting. It follows therefore that 

We assume lateral periodicity: all quantities are periodic in x, with period 1, so that 
T(0, z )  = T(1, z )  etc. 

The static reference atmosphere is a polytrope with T = z and a density p = ( Z / Z O ) ~ ;  

we take zo = and a polytropic index m = $, so that the atmosphere is only weakly 
stratified. The ratios of the viscous and magnetic diffusivities to the thermal diffusivity 
are set so that Q = = 0.1 (where circumflexes denote values at the middle of the 
layer). Then the state of the configuration is defined by two parameters: the Rayleigh 
number 8, and either the plasma beta b or the Chandrasekhar number Q = 1288/98. 

We have studied the stability of the static atmosphere with the aid of a program 
developed by Cattaneo (1984). Since the layer is only weakly stratified the values 
of and 8'") are close to the corresponding values Ide) and R(") for a Boussinesq 
fluid. For square rolls with an aspect ratio 1 = 2, the case with which we shall be 
most concerned, R(") or R(") are the same for horizontal and vertical fields; so linear 
theory yields results that are similar to those quoted in Parts 1 and 2. Convection 
sets in at a stationary (pitchfork) bifurcation when the field is weak and there is a 
Takens-Bogdanov bifurcation ( R  - R ) at 8 = 495, with fi = 1877 and Q = 54. 
For < 495 instability appears at an oscillatory (Hopf) bifurcation. Table 1 lists 8'"' 
and and Q that are relevant later in this paper. We have also 
compared the behaviour of 8'" as a function of Q for three different aspect ratios, 
1 = 1, 2 and 4. For Q < 1000 the values of fi") for 1 = 2,4 are very close, with 

A ( 4  - ~ ( 0 )  

for values of 
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b &'J) Q j Q 

8 10900 19370 512 1809 50.2 
16 2784 2475 1024 1175 16.3 
32 2210 982 2048 998 6.9 
64 2016 448 4096 929 3.2 

128 1934 215 8192 871 1.5 
256 1895 105 co 869 0 

TABLE 1. Linear theory: bifurcation values (1 = 2). 

R 161 

4 
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I N  
220 8192 40962048 1024 512 256 128 64 32 16 8 4 - 

B 
FIGURE 1. Location of computed nonlinear solutions in the (b, k)-plane for A = 2. Travelling waves 
(TW) are indicated by filled squares, standing waves (SW) by filled circles, pulsating waves (PW) 
by stars and steady solutions (SS) by crosses. Hollow squares and hollow circles denote modulated 
waves (MW) and quasi-periodic solutions, respectively. Where crosses (stars) are superposed on 
squares SS (PW) and TW are both stable. The lines of stationary and oscillatory bifurcations, at 
k = R , R , are also marked. -(el *(4 

that for 1 = 2 very slightly lower. For Q > 1000 the strong field favours flatter cells 
and R is less for 1 = 4. The bifurcation values for 1 = 1 always lie above those 
for R = 2, in contrast to behaviour in a strong vertical field, where narrower cells are 
preferred. 

In what follows, we present nonlinear results obtained numerically, using the two- 
step Lax-Wendroff scheme described in Part 1; the code is a modification of that 
used by Hurlburt & Toomre (1988). For nearly all the runs described here sufficient 
resolution was obtained with 40 mesh intervals in the z-direction but some runs 
were repeated with double that number. To measure the efficiency of convection we 
introduce a quadratic measure of the normalized superadiabatic heat transport, given 
by the Nusselt number 

(2.2) 

. 

N = 2(8T/8~)  - 1, 
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B N P li N 

= 2000 256 TW 1.007 /j = 8 10800 TW 1.01 
128 TW 1.007 21600 TW 1.039 

= 4000 64 SW (1.12) 16.0 43200 TW 1.029 
32 SW (1.12) 11.2 86400 TW 1.024 
16 SW (1.10) 8.5 

TABLE 2. Weakly nonlinear behaviour: results for 1 = 2. Bracketed values are averages. 

where the angle brackets denote an average over the upper boundary. In the absence 
of convection N = 1. 

3. Standing waves and travelling waves 
Our aim is to map out the regions in parameter space where stable travelling 

waves can be found, paying particular attention to the associated bifurcations. The 
procedure is to obtain numerical solutions as fi and a are varied systematically and to 
infer the bifurcation structure by reference to appropriate low-order models. (There 
is of course a risk that there may be more than one stable solution, as in $4.2 below.) 
We shall focus our attention on time-dependent nonlinear solutions with an aspect 
ratio A = 2, corresponding to square rolls if mirror-symmetry is preserved, though the 
effects of varying the aspect ratio will be considered briefly. Figure 1 summarizes the 
behaviour we have found in different parts of the (a,fi)-parameter plane. The linear 
stability curves are also marked. From this figure we observe that stable travelling 
waves appear in three different regions: near the stability boundary, in a magnetically 
dominated regime; at intermediate fieldA strengths, around a = 128; and for weak 
fields at low Rayleigh numbers, around R = 2000. We shall consider different aspects 
separately. 

3.1. WeakZy nonlinear behaviour (A = 2 )  
We first investigate the transition between standing waves and travelling waves 
near the oscillatory bifurcation at I? = 8'"' in order to determine which solution is 
preferred. Thus we study marginal behaviour as is decreased below the value at the 
Takens-Bogdanov bifurcation, where oscillations first appear. We find that solutions 
settle down rapidly to give either stable travelling waves or stable standing waves, 
regardless of initial conditions, without the uncertainties that arose with a vertical 
magnetic field in !art 1. The results of these runs are summarized in table 2. 

The runs with R = 2000 yield stable travelling waves. Perturbations to the trivial 
(static) solution develop into oscillations (standing waves) which gradually decay as 
the nonlinear solution converges to a travelling wave which is steady in a uniformly 
moving frame. Leftward- and rightward-travelling waves are exactly equivalent ; 
which one appears depends on the initial conditions. Although the amplitude is 
small, the pattern is definitely asymmetric, as shown by the streaklines in figure 2(a). 
For this rightward-propagating wave the sinking plume is slanted in the rightward 
(prograde) direction. We might expect the pattern to travel horizontally as a slow 
magnetoacoustic wave, with a velocity given approximately by the Alfven speed at 
the middle of the layer (in the absence of diffusion); indeed it can be confirmed that, 
in the Boussinesq limit with 0, [ << 1, travelling waves first appear with a velocity 
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RGURE 2. Different types of travelling waves. Streaklines of the velocity field (left) and magnetic 
field lines (right). Note the asymmetry of the streaklines. (a)  Weakly nonlinear (propagating 
rightward with velocity V = 0.076, for k = 2000, f i  = 128). ( b )  The magnetically dominated 
regime (leftward with velocity V = -0.306, for B = 8, R = 86400). ( c )  The strong-field regime 
(leftward with V = -0.114, for = 32, I? = 128000). ( d )  The intermediate regime (rightward with 

= 0.051, for f i  = 128, k = 32000). ( e )  The weak-field regime (leftward with V = -0.065, for 
= 512, k = 2000). 
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that is equal to the Alfven speed. For our reference atmosphere i j A  = 2/(3j)1/2, so 
that ijA = 0.10 for b = 128. The wave in figure 2(a) travels at a somewhat lower 
velocity, owing principally to the effects of diffusion. 

increases with increasing field strength, we have to choose a 
larger value of k in the strong-field regime. Hence we set fi = 4000 for 64 2 ) 2 16. 
Here we only find stable standing wave solutions, with a pattern that is stationary 
in the frame with no net momentum. These solutions are mirror-symmetric about 
vertical planes with a separation ; I ,  centred on the rising and falling plumes, and the 
velocity reverses after half a period (cf. Weiss 1991 ; Proctor 1992). 

< 16 a'" increases rapidly and the stability boundary hugs the line b = 8 
in figure 1. (In fact, the critical value of ) increases slightly when R(O) is large, as in 
figure l(b) of Part 1.) We therefore set f i  = 8 and obtain solutions as a is increcsed 
above the bifurcation point. For consistency, we choose the same values of R as 
in Part 1 and we find stable travelling waves once again. These solutions all have 
small amplitudes but the bifurcation appears to be subcritical. Figure 2(b) shows 
streaklines and field lines for a leftward-travelling wave: the magnetic field is only 
slightly disturbed but the asymmetry of the flow is much more pronounced than in 
figure 2(a). The large anticlockwise-rotating eddy contributes to a mean flow that is 
prograde near the top of the layer and retrograde at the bottom, with a jet in the 
retrograde direction. Once again the wave speed is somewhat less than the Alfvkn 
speed ($A = 0.41). 

Thus we find that weakly nonlinear solutions exhibit three different types of 
behaviour. Near the Takens-Bogdanov bifurcation, where we expect behaviour 
similar to that predicted in the Boussinesq approximation, travelling waves are indeed 
preferred and the solutions deviate only slightly from eigenfunctions of the linear 
problem. In the strong-field regime we find instead that standing waves are stable 
near the Hopf bifurcation but when the magnetic field is dominant (for b = 8) we 
recover strongly asymmetric travelling waves. The latter differ in scale and appearance 
from the travelling wave solutions for b = 8 in the presence of a vertical magnetic field, 
which are described in Part 1. However, it is characteristic of low$ behaviour, where 
the perturbed magnetic pressure is important, that travelling waves are preferred with 
either orientation of the field. 

A ( 0 )  , Since the value of R 

For 

3.2. The transition from standing waves to travelling waves (p = 32) 
In the strong-field regime standing waves are initially preferred when I = 2. As 
the Rayleigh number is increased, the standing waves lose stability in a pitchfork 
bifurcation, giving rise to modulated wavesL which drift slowly while they oscillate. 
These waves gradually change in form as R is further increased, and develop into 
weakly modulated travelling waves. Eventually, stability is transferred to travelling 
waves in a Hopf bifurcation. Our results provide a particularly clear demonstration 
of this transition, though similar behaviour has been found in other problems. The 
bifurcation sequence can be established by reference to low-order evolution equations, 
which have already been discussed at length in Part 1. 

We have explored the effects of increasing fi for b = 32 and th% results are 
summarized in table 3. 'We first consider those obtained for A = 2. At R = 4000 we 
find the stable standing wave solution already mentioned but the standing waves then 
undergo a pitchfork bifurcation, at which their mirror symmetry is broken, giving 
rise to a pair of modulated waves, each of which is periodic, with period P ,  in a 
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it N P it N P 

1 = 1 16000 
1 = 1.5 4000 
1 = 2  4000 

8000 
16000 
32000 
64000 

128000 

TW 
sw 
sw 
MW 
MW 
MW 
MW 
TW 

1.092 1 =3 4000 SW (1.11) 15.7 
(1.05) 8.9 8000 MW (1.16) 15.6 
(1.12) 11.2 16000 QPMW (1.26) 
(1.22) 11.6 32000 MW (1.30) 17.1 
(1.28) 12.2 1 = 4 4000 SW (1.06) 20.5 
(1.30) 12.8 
(1.35) 13.4 
1.48 

TABLE 3. Standing waves and modulated waves: results for B = 32. 

slowly drifting frame. In this frame, the pattern repeats itself, with a displacement ;A, 
after an interval if' in time. It is important to realize that there are two alternative 
ways of describing these modulated waves. The solution can be regarded either as 
a slowly drifting wave with period P and a symmetry with respect to translation by 
;A in x or as a modulated wave with a period P' = iP, travelling at a speed that is 
approximately A/P (Proctor & Weiss 1993). This can be seen from figure 3(a), which 
shows a modulated wave for fi = 8000: clockwise-rotating eddies predominate over 
anticlockwise eddies at each phase of the cycle, giving rise to a horizontally averaged 
shear flow that is rightward at the top of the layer and leftward at the bottom. Near 
the pitchfork bifurcation it is natural to regard the wave as an asymmetric modulated 
standing wave with period P .  We see that the eddies reverse and that over one period 
the pattern drifts slowly to the right with a velocity V = 0.15A/P. (There is, of course, 
a mirror-image of this solution, which drifts to the left.) Alternatively, if we follow 
the sinking or rising plumes we find that the pattern of non-reversing eddies travels 
to the left with a velocity I" = -0.85A/P and a period P' .  

As k is increased the modulated waves change in form and travel more rapidly, 
while their period increases. However, the time-averaged value of the Nusselt number 
changes very slowly, since the line of constant B in parameter space is never far 
from the line of Hopf bifurcations near B = 8. Figure 3(b) shows a modulated wave 
for fi = 64000. This solution could be described as a pulsing travelling wave (cf. 
Landsberg & Knobloch 1993; Matthews et al. 1993). The dominant anticlockwise 
eddies drift to the right with a period P' and a velocity V' = 0.401/P'. The same 
solution can equivalently (if perversely) be regarded as a leftward drifting oscillation 
with the spatiotemporal symmetry described above, a period P = 2P' and a velocity 

The branch of travellicg waves finally gains stability. Figure 2(c) shows a highly 
asymmetric solution for R = 128000, which travels leftward without change of form. 
In contrast to the solution in figure 2(b), the large eddy is prograde at the bottom. 
The flow is strongly sheared, streaming in the retrograde direction at the top of the 
layer, but the Nusselt number is quite low, while magnetic flux is pumped towards 
the upper boundary. This solution has a very different structure from the weakly 
nonlinear travelling waves in figures 2(a) and 2(b). 

We have also investigated the effect of varying the aspect ratio. For flatter cells 
with I = 3, which are marginally favoure: by linear theory, we again find standing 
waves, followed by modulated waves (at R = 16000 the waves are quasi-periodically 
modulated). Standing waves again appear with Iz  = 4. As the aspect ratio is reduced, 

v = -O.lOA/P'. 
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(0) 

FIGURE 3. Modulated waves for f i  = 32, followed over half a period. (a) Rightward drifting 
standing wave for R = 8000. ( b )  Pulsing travelling wave for I? = 64000. 

we find that standing waves are still preferred with 1 = 1.5. The periods of these 
solutions are given approximately by the Alfven crossing time l / O A .  It is only for 
narrow cells with il = 1 that stable travelling waves finallyAappear. The value of 
R(”) is much higher for this aspect ratio and the solution at R = 16000 settles down 
to a mildly asymmetric travelling wave. (This change in behaviour is caused by 
interactions between single roll and stacked roll solutions, which lead to streaming 
instabilities when the aspect ratio is small.) 
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ii N ii N P  

2000 TW 1.0070 32000 PW (2.31) 5.05 
4000 TW 1.086 45000 MW (2.5) 6.63 
8000 TW 1.58 64000 PW (2.55) 5.31 

16000 TW 2.08 128000 PW (2.70) 5.70 
22500 TW 2.28 256000 Aperiodic (2.8) 
32000 TW 2.39 

TABLE 4. The intermediate regime: results for = 128 with 1 = 2. 

This set of results for /? = 32 confirms that the qualitative behaviour found for A = 2 
is insensitive to the choice of aspect ratio; travelling waves can only be stabilized by 
forcing motion with A = 1 and they become unstable if long-wavelength perturbations 
are admitted. Thus we are justified in confining our attention to solutions obtained 
with ,I = 2. It is signific2nt that, with a horizontal field, stable travelling waves do 
eventually appear when R is large; there are no indications of similar behaviour when 
the field is vertical. 

3.3. The intermediate regime (/? = 128, A = 2) 
We next consider behaviour in the regime where the magnetic field is sufficiently 
strong for instability to set in at a Hopf bifurcation but f i  is not small enough for 
compressibility to be important. Since the layer is only weakly stratified, we expect 
to find behaviour similar to that predicted in the Boussinesq approximation, and 
travelling waves are indeed preferred in this regime, in contrast to behaviour when 
the field is vertical. 

Results for f i  = 128 are summarized in table 4. For fi = 2000 we obtain the 
stable travelling wave in figure 2(a), as might be anticipated from the analysis of 
Knobloch (1986), who showed that weakly nonlinear travelling waves were stable 
in the neighbourhood of the Takens-Bogdanov bifurcation for a Boussinesq fluid. 
As fi is increased the travelling waves persist and become more asymmetric. We 
find stable travelling waves up to A = 32000. The most significant feature of the 
rightward-propagating solution shown in figure 2(d) is the asymmetric distribution of 
magnetic flux, which is pumped upwards and concentrated near the top of the layer. 
The velocity pattern is not too different from that in figure 2(a), though there is a 
clear asymmetry, with a backward-tilted rising plume. The form of this solution is 
quite unlike that of the travelling wave for f i  = 32 in figure 2(c), although the kinetic 
energy is only slightly less. 

4. Travelling waves and steady convection (A = 2) 
In this section we study the interactions between travelling waves and steady 

convection, and interpret the behaviour found in numerical experiments by reference 
to the underlying bifurcation structure. In order to follow the transition from standing 
waves via modulated waves to travelling waves and then to a steady solution we 
decrease the imposed field for a fixed value of the Rayleigh number and identify 
the solutions that are stable in different regimes. By varying a single parameter we 
can construct a codimension-one bifurcation sequence. Repeating this process for 
different values of A then allows us to locate the bifurcation sets in a two-dimensional 
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B N N 

k = 1500 1024 TW 1.126 SS 1.37 (transient) 
8192 TW 1.191 SS 1.54 

k = 2000 512 TW 1.16 SS 1.57 (transient) 
1024 TW 1.14 SS 1.77 
2048 TW 1.132 SS 1.84 
4096 TW 1.130 SS 1.87 
8192 TW 1.130 SS 1.89 

214 TW 1.129 SS 1.89 
k = 4000 256 SS 1.96 

512 SS 2.42 
A = 32000 16 QPMW (1.25) 

32 MW (1.30) 
64 QPMW (1.48) 

128 TW 2.39 
256 TW 3.10 
512 SS 4.11 

TABLE 5. Travelling waves and steady convection: results for A =2. 

(p, &-parameter plane. As expected, the Takens-Bogdanov bifurcation, which is of 
codimension two, plays an important role as an organizing centre i? this plane. The 
results are summarized in table 5: for moderate Rayleigh numbers ( R  = 4000, 32000) 
the associated bifurcation structure is relatively simple but behaviour at low Rayleigh 
numbers (a = 1500, 2000) proves more complicated, owing to the proximity of the 
Takens-Bogdanov bifurcation and to the survival of travelling waves even in the 
absence of a magnetic field. 

4.1. Bifurcation from the steady solution 
We first consider the sequence of solutions obtained for = 4000 as the imposed 
field is reduced below the value at the Hopf bifurcation from the trivial solution. 
Near the bifurcation we find stable standing waves which persist, as described in 
43.1 above, until there is a transition to stable travelling waves and thence to stable 
steady convection for j? 2 256. Steady solutions actually appear before the pitchfork 
bifurcation, as expected from Arter’s (1983) study of the Boussinesq problem, and 
then remain stable through the weak-field regime; however, our results differ from 
Arter’s owing to the adoption of periodic lateral boundary conditions, which allow 
a new branch of travelling waves to appear. The corresponding bifurcation pattern 
is sketched in figure 4(a). The structure here, and in subsequent figures, is minimal: 
the existence of all the bifurcations and solution branches that are shown can be 
deduced from the numerical experiments but, since the unstable solutions cannot be 
computed, there may be further bifurcations on the unstable branches. Although 
its general structure resembles that for a vertical field (cf. figure 4(a) of Part 2) the 
travelling waves are staFle over a much wider range when the field is horizontal. 

At higher values of R theAstanding waves are always unstable. Figure 4(b) shows 
the bifurcation pattern for R = 32000. Travelling waves are preferred in the weakly 
nonlinear regime but then lose stability to modulated waves which undergo a further 
Hopf bifurcation to give quasi-periodic modulation with intervals of frequency lock- 
ing. (Behaviour at j? = 64, where there is very slow modulation of a double-humped 
basic cycle, suggests that there is some interaction with the pulsating waves to be 



Nonlinear compressible magnetoconvection. Part 3 299 

- - - 
P P P 

FIGURE 4. Travelling waves and steady convection: schematic bifurcation patterns, showing N as a 
function of b. (a) For k = 4000: the branch of SS which emerges from the stationary bifurcation 
at b(e) = 340 has a turning point at b = 180, giving rise to subcritical steady convection. Branches 
of SW and TW solutions emerge together from the oscillatory bifurcation at 1") = 11. The SW 
branch terminates in a heteroclinic bifurcation on an unstable segment of the steady branch, while 
the TW branch joins the steady branch in a pitchfork bifurcation. SW are stable for b'" < b 5 90; 
then stability is transferred to TW via a short branch of MW (which we have not explicitly located) 
and the TW finally give way to steady convection at b = 200 < / f e ) .  The SS remain stable as )+co. 
( b )  For 2 = 32000: TW are stable near the Hopf bifurcation at b'"' = 8 but undergo further Hopf 
bifurcations to give quasi-periodic MW. Frequency locking leads to soluti2ns that are periodic in 
a moving frame, at a 1:24 resonance for f l  = 16 and a 1:l resonance for fi  = 32 but the solution 
at b = 64 is quasi-periodic in the moving frame. The branch of TW regains stability at = 100 
and joins the steady branch at b = 300. (c) For R = 2000, showing two branches of TW, emerging 
from the primary Hopf bifurcation and from a secondary pitchfork bifurcation. The steady branch 
emerges from a pitchfork bifurcation ( f ' )  = 470) and has a turning point at b = 400, but SS only 
gain stability in a subcritical pitchfork bifurcation, at b = 800, which gives rise to unstable TW. The 
branch of stable TW that emerges from the Hopf bifurcation persists for all ,8 > 8") = 71, while 
the unstable SW branch ends in a heteroclinic bifurcation. 

described in 95.) The branch of travelling waves eventually regains stability and joins 
the steady branch as before. 

4.2. The weak-field regime 
From figure 1 we observe that stable travelling waves appear at low Rayleigh numbers 
in a band around I? = 2000 that covers the multiple bifurcation at f l  = 495 and persists 
into the kinematic regime as p - m .  Evidently the bifurcation structure has features 
that are more subtle than would appear from figure 4. 

As the field strength is decreased with I? = 2000 stable TW first appear near the 
Hopf bifurcation at f o '  = 68, as described in $3.1. The solution for f l  = 128 was 
illustrated in figure 2(a). Figure 2(e) shows a travelling wave at B = 512, close to 
the Takens-Bogdanov point. Motion is dominated by a single eddy which produces 
a mean shear flow with a prograde velocity at the upper boundary. Magnetic flux is 
concentrated at the top and bottom of the layer and in the region where the flow is 
weak, but the field is strongest near the upper boundary. The Nusselt number for 
this solution is actually greater than that for f l  = 256: apparently the bifurcation 
has become subcritical. By using solutions computed at lower p to provide initial 
conditions slowly travelling waves can be followed into the weak-field regime, where 
there is only a stationary bifurcation from the trivial solution. As the field strength 
is decreased to a value that is negligibly small (see table 6 )  the solutions remain 
stable and similar to that in figure 2(e). Stable steady solutions can also be obtained, 
by perturbing an initially static configuration. Like SW, these solutions have mirror 
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Iz N rz N 

4 = 2” 2000 TW 1.13 Q = 0.108 1000 SS 1.062 

4000 SS 2.75 1500 TW 1.119 
SS 1.56 

8000 SS 3.60 2000 TW 1.13 
SS 1.90 

16000 SS 4.63 2500 SS 2.15 
32000 SS 5.80 3000 SS 2.37 
64000 PW(QP) (7.3) 4000 SS 2.10 

ss 1.90 

TABLE 6. The kinematic limit: results for I = 2. 

\ 2000 1 \ I-- 

-R 1 2 
1 

FIGURE 5. Travelling waves in the weak-field regime. (a) Bifurcation pattern as 2 is increased when 
Q is very small, showing the bubble of TW. With suitably chosen initial conditions we obtain stable 
TW for R = 1500 and 2000. Using these TW as initial conditions for runs with k = 1000, 2500, we 
recover SS. We have also confirmed that SS at I? = 1500, 2000 are stable to TW perturbations. (6) 
Origin of the bubble: conjectured bifurcations in the (I,&-plane for Q = 0, showing bifurcations 
from the trivial solution (k = A@)), pitchfork bifurcations from SS to TW (full line) and saddle-node 
bifurcations of TW (broken line). 

symmetry about vertical planes. Solutions with b >, 1024 are found to be stable to 
TW perturbations. At = 512, however, we find a transient SS that gives way to 
TW. At this point in parameter space, only travelling waves are stable. 

Beth TW and SS %an also be found with k = 1500. The trivial solution is stable 
for p < 633 but for p = 1024 we obtain a transient steady state that gives way to a 
stable TW. From it we obtain TW for larger values of ). Steady solutions can also 
be obtained for the same parameter values. 

In order to understand the behaviour revealed by they results we have proceeded 
towards the kinematic limit and computed solutions as R is varied with a field that 
is negligibly small. Following Part 2, we set Q = 0.108 (corresponding to = 2*O at 
k = 8000) and obtain the results listed in table 6. The steady branch that emerges 
$om the primary pitchfork bifurcation is stable to TW perturbations at least for 
R < 8000, while two branches of TW (one stable, the other unstable) appear in 
a saddle-node bifurcation at k = 1200 and disappear in another at k = 2200, as 
sketched in figure 5(a). Although these TW are a purely hydrodynamic phenomenon, 



Nonlinear compressible magnetoconvection. Part 3 301 
it would be difficult to reach them without starting from magnetically generated TW 
solutions. 

In any nonlinear problem there is always a risk that new solutions may appear 
in an isolated bubble between a pair of saddle-node bifurcations. This may be 
tiresome but if it happens one should seek some plausible explanation. Let us 
therefore briefly cpsider the two-parameter problem where both A and k are varied 
for Q = 0. When R is increased for I = 1 the steady branch sheds TW in a subcritical 
pitchfork bifurcation close to the stationary bifurcation at = 3204 (see Part 
2). We conjecture that subcritica! pitchfork bifurcations from the symmetrical steady 
solutions lie on a curve in the (A, R)-plane with a turning point at some 20 (1 < A0 < 2), 
as indicated in figure 5(6). Thus the pitchfork bifurcations do not occur for 3, > 20. 
The curve on which they lie is enclosed by a curve of saddle-node bifurcations that 
intersects the line 1 = 2 twice, as described above, and probably even extends to A = 4 
(cf. Part 2). Thus the bubble at I = 2 is not completely isolated; rather, it is linked 
to bifurcations from SS at smaller aspect ratios. 

For 1 = 2 the bubble intersects the steady branch again if the magnetic field is 
sufficiently strong. The overall bifurcation pattern for k = 2000 is sketched in figure 
4(c). The steady branch undergoes a saddle-node bifurcation but only gains stability 
in the subcritical pitchfork bifurcation, shedding a pair of unstable TW which remain 
as b+m. Meanwhile, the branch of stable TW that emerges from the primary Hopf 
bifurcation persists for all b > b"). This bifurcation pattern differs significantly from 
that for a vertical field (see figure 3(a) of Part 2). When the field is vertical TW are 
only stable for a narrow range (1024 2 2 512) with k = 2000. Moreover, the 
pitchfork bifurcation from SS at b w 1500 is supercritical and there is no link to the 
bubble of TW in the kinematic regime. 

The lower part of figure 6(a) shows the bifurcation set in the (b,k)-plane that 
corresponds to figures 4(c) and 5(a). The line of primary pitchfork bifurcations 
(2 = a'") intersects the line of primary Hopf bifurcations (k = k")) at the Takens- 
Bogdanov point. Near that point the latter bifurcation is subcritical, so that there is 
a saddle-node bifurcation at the turning point on the TW branch. When the field is 
significant there is also a line of saddle-node bifurcations (k = kmin) on the steady 
branch. Travelling waves bifurcate from the steady branch on a line of secondary 
pitchfork bifurcations whichAcurves out of the Takens-Bogdanov point and extends 
to large k (see below). For R > 2200 the pitchfork bifurcations are supercritical but 
for 2200 2 2 1300 they become subcritical. Consequently there are two lines of 
saddle-node bifurcations of TW, which extend to the kinematic limit. These lines 
define the band of stable TW in the weak-field regime. 

4.3. Travelling waves and the Takens-Bogdanov bifurcation 
The region near the double-zero Takens-Bogdanov bifurcation in figure 6(a) is en- 
larged in figure 6(b) to show more detail. Behaviour here is more complicated still. 
The line of secondary pitchfork bifurcations curves round the Takens-Bogdanov point 
and touches the line of saddle-node bifurcations on the steady branch. At the point 
of tangency the pitchfork bifurcation from SS to TW is transferred from the upper 
to tke lower segment of the steady branch. Since the amplitude of TW solutions 
for R = 2000 increases towards the Takens-Bogdanov point, the Hopf bifurcation 
must become subcritical; the line of saddle-node bifurcations on the TW branch is 
indicated in figure 6(b). 

The codimension-one bifurcation sequence along the slice labelled (i) in figure 6(6) 
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FIGURE 6. (a) Bifurcations in the (b ,  @-plane, showing the lines of primary Hopf (Hl)  and pitchfork 
(pfl) bifurcations, at k'"' and a'.', emerging from the lower Takens-Bogdanov point, and the line 
of turning points on the steady branch at A,,,,,. Also shown are the lines of secondary pitchfork 
bifurcations to TW (labelled pD), and the lines of saddle-node bifurcations of TW solutions (labelled 
s-n). From the upper Takens-Bogdanov point there emerges a line of secondary Hopf bifurcations 
(H2) that gives rise to PW, together with a line of tertiary Hopf bifurcations (H3) leading to MW 
and a line of gluing bifurcations (h) that produces PW. (b )  Detail showing behaviour near the lower 
Takens-Bogdanov point. TW exist within the shaded region. ( c )  Transitions from travelling waves 
to pulsating waves: bifurcations as R is increased for = 128, showing transitions from TW to 
MW and PW. The TW branch emerges from the primary Hopf bifurcation (Hl) and undergoes a 
subsequent Hopf bifurcation (H3) that gives rise to MW, which acquire spatiotemporal symmetry 
at a gluing bifurcation (h) that leads to PW. 

is sketched in Figure 7(a). Here the branch of TW is stable between the turning point 
and the supercritical pitchfork bifurcation from the steady branch. The slice labelled 
(ii) lies beyond the Takens-Bogdanov point: although the primary Hopf bifurcation 
has disappeared, TW emerge from a secondary pitchfork bifurcation which gradually 
climbs up the unstable segment of the steady branch. The corresponding bifurcation 
diagram in figure 7(b) shows that TW are stable on a segment that lies between two 
saddle-node bifurcations, since the upper pitchfork has become subcritical. Finally, 
figure 7(c) shows bifurcations along the slice labelled (5).  Now the secondary 
bifurcation has moved round the turning point on the steady branch and there is 
a short, stable section near the saddle-node. TW are stable between the secondary 
pitchfork and the saddle-node that precedes the subcritical tertiary pitchfork. Apart 
from that last bifurcation the structure is similar to that found when the field is vertical 
(cf. Part 2). Analogous behaviour for standing waves has been described by Rucklidge 
et al. (1993). The normal form equations for a Takens-Bogdanov bifurcation with 
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FIGURE 7. TW and SS: bifurcations along the cuts labelled (i), (ii), (iii) in figure 6(b).  

O(2) symmetry (Dangelmayr & Knobloch 1987) need to be augmented by including 
higher-order terms in order to cover the behaviour described here; the resulting 
system will be discussed elsewhere. 

5. Pulsating waves (A = 2) 
The steady solutions are mirror-symmetric about vertical planes, separated by 

and centred on rising and falling plumes. This symmetry may be broken in 
two ways. A pitchfork bifurcation leads to uniformly drifting travelling waves, as 
described in $4; but a Hopf bifurcation gives rise to pulsating waves, which possess 
a spatiotemporal symmetry corresponding to reflection about a mirror-plane after 
translation by half a period in time (Landsberg & Knobloch 1991; Proctor & Weiss 
i993). Streaming instabilities provide an alternative route to pulsating waves : as 
R is increased, travelling waves may lose stability to modulated waves, which are 
transformed into pulsating waves at a global gluing bifurcation (Matthews et al. 
1993). We find examples of both routes. 

Pulsating waves are particularly prominent when the field is vertical and they are 
discussed in greater detail in Part 2. Lantz & Sudan (1995) and Lantz (1995) have 
investigated the transition from steady convection to pulsating waves in a horizontal 
field. They used the anelastic approximation and adopted different magnetic boundary 
conditions, with B, fixed at z = zo + 1 and B matched to a potential field at z = 20. 

In their computations the aspect ratio was small (A = 1). As Q was decreased for 
fixed R they found a transition from SS to PW and thence to TW and, eventually, to 
MW. Their results could also be related to earlier calculations with Q = 0 (Ginet & 
Sudan 1987). 

We shall consider wider cells, with A = 2 so that rolls have a square cross-section 
in the steady state. For intermediate fields, we find some novel and complicated 
behaviour. As we have seen, travelling waves are preferred at low k when f i  = 128. 
In fact, we obtain stable TW for 2000 < k < 32000. However, the travelling waves 
become unstable for k 2 45000: over the range 32000 < l? < 128000 we find stable 
pulsating waves, with Nusselt numbers that oscillate with increasing amplitude about 
a mean v$ue slightly lower than that for the TW. The velocity and magnetic field for 
a PW at R = 64000 are illustrated in figure 8. The rising plume waggles alternately to 
left and right, so that after half a period u and B are reflected %bout mirror-planes. 
At yet higher Rayleigh numbers the PW become chaotic; so at R = 256000 we only 
find aperiodically pulsating waves. 

There is thus a range with hysteresis, where both travelling and pulsating waves 
are stable. In Part 2 we found that the transition from TW to PW inIolved an 
intermediate branch of modulated waves, and indeed we find here that at R = 45000 
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FIGURE 8. Pulsating wave for f i  = 128, fi = 64000, showing solutions at intervals of a 
quarter-period. The first and last are related by the broken mirror symmetry. 

the TW loses stability and gives way to a stable MW. The wave is only slightly 
asymmetric, while the modulation has a longer period than the PW and is weak. 
These results permit the construction of the minimal bifurcation diagram shown in 
figure 6(c), which is consistent with all the known behaviour at /? = 128. 

In Part 2 we described a low-order model (Rucklidge & Matthews 1993, 1995) 
in which such transitions were related to a multiple (Takens-Bogdanov) bifurcation 
from the steady solution, which acted as an organizing centre in the (k,Q)-plane. 
There are several items of evidence suggesting that the behaviour shown here may 
be related to the presence of a (degenerate) Takens-Bogdanov bifurcation from the 
SS solution, not far away in the (/?,&-plane. First of all, as we have seen, the 
TW and PW resemble the SS solutions closely with small asymmetry and low phase 
velocities, all suggesting the presence nearby of a pitchfork bifurcation from SS to 
TW and a Hopf bifurcation from SS to PW. Indeed, we already know that there is 
a line of pitchfork bifurcations to TW that passes between 1 = 512 and 1 = 256 
for = 32000 (cf. figure 1). There is also evidence for a line of secondary Hopf 
bifurcations from SS to PW extending from the Takens-Bogdanov point to large 1. 
Results for /? = 220, given in table 6, show that (as already pentioned in $4.2) steady 
solutions remain stable up to = 32000. Convection at R = 64000 displays quite 
different behaviour. Mirror-symmetry is broken and the time-dependent solution 
oscillates about the unstable SS. We infer that there is a Hopf bifurcation, around 
R = 50000, that gives rise to pulsating waves. Close inspection of our solution 
at fi = 64000 reveals that it is actually quasi-periodic, with a weak but definite 
modulation (apparently near a period-doubling resonance). Although this result can 
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only be regarded as suggestive, since our numerical resolution is inadequate at this 
Rayleigh number, we believe that it is qualitatively reliable. The computational 
difficulties become apparent when we calculate the peak local value, M,,,, of the 
Mach number, M = lul/us, where u,’ = yT. When = 128, the velocity is everywhere 
subsonic, with Mmax < 0.67, owing to the presence of a significant magnetic field. 
In the kinematic limit, we find, however, that M,,, > 1 for R 3 2000; the regions 
where the flow is supersonic are highly localized, near the upper boundary (where 
T is small) and in the sinking plumes. Our difference scheme cannot describe 
shocks and local structures must be affected by discretization as Mqx increases. To 
estimate the effect of discretization errors we repeated the run at R = 32000 with 
doubled resolution and found no change in N ,  with a 3% decrease in M,,,; these 
global quantities apparently remain insensitive to truncation errors at this value of 
R. In fact, precise computations by Cattaneo, Hurlburt & Toomre (1990) show that 
shocks develop at high 8, giving rise to aperiodic oscillatory behaviour. We presume 
that the oscillations appear first as PW and that subsequent bifurcations lead to 
chaos. 

We thus infer the bifurcation structure in the upper part of figure 6(a). The new 
Takens-Bogdanov point, with 8 = 50000, acts as an organizing centre. From it 
emerge lines of secondary pitchfork bifurcations from the SS branch, of secondary 
Hopf bifurcations as described above, tertiary Hopf bifurcations leading to MW, 
and gluing bifurcations giving the PW. Other lines of saddle-node bifurcations will 
also be present. Fortunately it is not necessary to analyse all the details as the 
picture is consistent with one of the unfoldings of the Takens-Bogdanov bifurcation 
with a subcritical Hopf bifurcation branch (requiring additional quintic terms for 
completeness), which has already been discussed by Rucklidge et al. (1993) in another 
context. The structure near the Takens-Bogdanov point is similar to that in their 
figure 4, while their figure 5( b )  shows a pair of saddle-node bifurcations corresponding 
to those on the PW branch in our figure 6(c). 

The pulsating waves described here are relatively tame; the interesting feature is 
their relationship to travelling waves. When the aspect ratio is reduced, streaming 
instabilities lead to more dramatic oscillations, which arise both when the field is 
horizontal (Lantz & Sudan 1995) and when it is vertical (see Part 2). The associated 
bifurcation structure can be clarified by reference to suitable low-order models. Lantz 
(1995) constructed a ninth-order system that represents the transition from SS to TW 
and thence to MW and PW, while Rucklidge & Matthews (1993, 1995; Matthews et 
al. 1993) have developed a fifth-order model and analysed its bifurcation structure in 
great detail. Since this topic has already been treated in Part 2, we shall not pursue 
it here. 

6. Discussion 
This study clearly demonstrates that any interpretation of numerical experiments 

on nonlinear convection must rely on establishing the appropriate bifurcation struc- 
ture. For our idealized problem, we have succeeded in isolating the various regimes in 
which different types of travelling wave are stable. In addition, we have investigated 
the web of relationships between travelling waves and steady solutions, standing 
waves, modulated waves and pulsating waves, and unravelled the bifurcation se- 
quences in each regime. The results of our numerical experiments are summarized 
in figure 1, while the relevant bifurcation structures are displayed in figure 6(a). The 
latter is dominated by the presence of two Takens-Bogdanov bifurcations, each of 
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codimension two, which act as organizing centres in the @,@parameter plane. It 
is apparent that no single process can explain the occurrence of travelling waves in 
different regions of this plane. Indeed, a summary of our results confirms that several 
different mechanisms are involved. 

In the magnetically dominated regime TW are preferred to SW. For 1 = 8, near the 
stability boundary, only TW are found. They are apparently driven by fluctuations in 
magnetic pressure which, as in the case of a vertical field, cannot readily be balanced 
by thermal pressure in this low-1 limit. In a horizontal field we might expect these 
waves to travel as slow magnetoacoustic waves with a velocity close to the Alfvh 
speed. For our configuration (1 = 8, I I  = 2) slow waves would propagate horizontally 
with a velocity I/ = O.96OA but fast waves would have V = 3.806~; for the example in 
figure 2(b) the actual wave speed V = 0.750A. There are significant differences from 
the results reported for a vertical field in Part 1. In the latter case the TW all had 
a wavelength A: = 1 and were unstable in the immediate neighbourhood of the Hopf 
bifurcation for b = 8. Here stable TW appear immediately with 1 = 2. Moreover, the 
solutions have a very different structure. Whereas the TW in Part 1 have a triangular 
form with a prograde jet, the rolls in figure 2(b) are distinctly asymmetric, with a 
retrograde jet. The sense of the more prominent eddy is such that motion is prograde 
at the top of the layer. 

SW are preferred near the oscillatory bifurcation in the strong-field regime (16 < 
b < 64). The behaviour of weakly nonlinear convection is similar to that found when 
the field is vertical but there is a profound difference at large k, where TW acquire 
stability. Moreover, these TW (in figure 2c) have a different form from those in the 
magnetically dominated regime: they are very asymmetric but the prominent eddy 
is prograde at the bottom, while magnetic flux is pumped towards the top of the 
layer. 

Since our layer is only weakly stratified we expect to find behaviour consistent 
with Boussinesq theory at intermediate field strengths (128 6 < 256), when com- 
pressibility is less important. This is the regime where TW are preferred at onset, 
in contrast to behaviour when the field is vertical. The solution in figure 2(a), near 
the initial bifurcation, resembles the eigenfunction of the linear problem. Even at a 
higher Rayleigh number the drifting rolls in figure 2(d )  are only mildly asymmetric; 
the prominent eddy is again prograde at the bottom while flux is concentrated near 
the top of the layer, where motion is suppressed. This vertical asymmetry suggests 
that the stratification has become significant. In this regime the difference between 
vertical and horizontal fields is quite clear. Tzavelling waves are favoured in the latter 
case and persist to relatively high values of R - where they only disappear as a result 
of further instabilities associated with streaming flows. 

Travelling waves also persist beyond the bifurcation of codimension two with 
f l  = 495. The convoluted bifurcation structure in figure 6(b) arises when the primary 
bifurcation to TW is subcritical in the neighbourhood of this Takens-Bogdanov 
bifurcation. Thus we expect to find TW at low Rayleigh number for = 512, 1024. 
Indeed, TW also appear in this region when the field is vertical. Their occurrence 
here is a consequence of nonlinear dynamics rather than of any specific physical 
mechanism. 

Finally we come to the weak-field regime, where TW exist for 1500 < k < 2000. 
The wave for 1 = 512 in figure 2(e) is different again: the rolls are strongly asymmetric 
but the prominent eddy is prograde at the top and there is no significant pumping of 
magnetic flux. This structure is preserved as b-m though the asymmetry becomes 
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more marked, until the subsidiary eddy almost disappears ; meanwhile, the velocity 
remains small and scarcely changes. These TW are purely hydrodynamic in origin: 
they are caused by a tilting instability that gives rise to shear (Howard & Krishnamurti 
1986; Matthews et al. 1993). The only difference between vertical and horizontal 
fields is that the TW are always present in the latter case. 

There is no single simple answer to the question: what mechanism determines 
whether SW or TW are preferred? Near the initial Hopf bifurcation the coefficients 
of the relevant terms in a centre manifold reduction depend on a delicate balance 
between competing processes and the result cannot readily be predicted (Matthews 
& Rucklidge 1993). The preference for TW near the stability boundary at f l  = 8 
is due to compressibility. In the strong-field regime SW are initially preferred for 
either orientation of the field, though TW eventually take over when the field is 
horizontal. With weak fields, the steady state is stable but stratification allows stable 
TW to appear as a hydrodynamic effect. It is only for intermediate field strengths, in 
an effectively Boussinesq regime, that there is a striking difference between vertical 
and horizontal fields, as suggested by weakly nonlinear theory (DangeImayr & 
Knobloch 1986; Knobloch 1986). Here we find that SW are preferred when waves 
travel up and down along a vertical field, while TW are stable when the field is 
horizontal. 

The overall comparison between figure 1 of this paper and figure 2(a) of Part 1 
certainly indicates that stable TW are more prevalent with a horizontal field. This 
accords with our intuitive expectation that travelling waves should be favoured when 
they can propagate horizontally as slow magnetoacoustic waves. In this context, it is 
significant that in thermosolutal convection, where disturbances travel obliquely, TW 
are again preferred (Moore & Weiss 1990). The general conclusion to be drawn from 
these idealized model calculations is that travelling waves of one kind or another can 
be excited convectively when the field is strongly inclined, as in the penumbra of a 
sunspot. There is an obvious example of this process. Running penumbral waves 
propagate radially outwards across the penumbra and extend coherently over a large 
azimuthal angle (Lites 1992); they seem to be unaffected by the fine-scale filamentary 
structure. These waves are observed in the chromosphere and upper photosphere, 
and travel at (or faster than) the sound speed. They can be modelled as fast 
magneto-atmospheric waves, trapped in a low-velocity layer, since the Alfvkn speed 
increases upwards into the chromosphere and the sound speed increases downwards 
below the photosphere. Such waves can obviously be excited by the superadiabatic 
stratification and so it is likely that they too have a convective origin (Thomas & 
Weiss 1992). 

This paper concludes our investigations of two-dimensional magnetoconvection. 
We have successfully isolated different types of oscillatory behaviour and analysed 
their properties. Together with the pioneering study of Hurlburt & Toomre (1988) this 
series extends the systematic treatment of Boussinesq magnetoconvection (Proctor & 
Weiss 1982) to include effects of compressibility and of relaxing lateral boundary 
conditions. We have found standing waves, travelling waves, pulsating waves and 
modulated waves in vertical and horizontal fields. The next stage is to tackle the 
more realistic problem of three-dimensional magnetoconvection. Preliminary results 
(Matthews 1993; Matthews et al. 1994) confirm that similar solutions can be found, 
together with a rich variety of new phenomena. Unravelling the associated bifurcation 
structures will provide a challenge for the future. 
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